
R Summer Assignment

Summer ѱѶȣѵ, MPA/ID Incoming Class

Due August Ѵ, ѱѶȣѵ

Combined with the assigned primers, this set of exercises will help you get you up and
running with doing basic data analysis in R. The Math Camp program will go over the
exercise to clarify any points of confusion.ȣ

Submission

Do your work in the rstudio.cloud environment described below and submit only the
saved .R Ƥle to the Assignment Page in Canvas.ѱ More details on how to do this are
provided at the beginning and end of this assignment.

Where are we? Where are we headed?

Before you start this practice problem set, you should have completed, or at least re-
viewed the RStudio Primers:

ȣ. Visualization Basics
ѱ. Programming Basics
Ѳ. Work with Tibbles
ѳ. Isolating Data with dplyr
Ѵ. Creating Variables and dataframes

After this assignment, we’ll be offering several more sessions in Math Camp to
cover more tools and concepts.

ȣ That said, please feel free to contact Shiro (kuriwaki@g.harvard.edu) if you have any questions in the
meantime.

ѱ Once you are authorized to access theMPA/IDMath CampѱѶȣѵ page, the direct link to the assignment
is: https://canvas.harvard.edu/courses/62068/assignments/285490

ȣ

https://rstudio.cloud/learn/primers/1.1
https://rstudio.cloud/learn/primers/1.2
https://rstudio.cloud/learn/primers/2.1
https://rstudio.cloud/learn/primers/2.2
https://math-camp-2019.shinyapps.io/03a-deriving-mutate/
https://canvas.harvard.edu/courses/62068/assignments/285490

Problem Ȣ: Familiarize with the Style Guide

Learning any language requires following its form and style. Throughout the course,
we will be enforcing a set of common set of guidelines on how R code should be writ-
ten. Before writing any code, read and try to internalize Book I (“Analyses”) of tidyverse
style guide (https://style.tidyverse.org), especially chapters ȣ and ѱ.

Code style matters: Please adhere to the guidelines in this style guide for all subse-
quent code you write (including this assignment).

Problem Ѱ: Loading a Spreadsheet in RStudio

The interactive windows in the primers got you started in R, but was also restrictive.
Most of your data analysis work will involve programming in R on a designated inter-
face called RStudio. Follow the steps below to get set up and load a dataset. The page
below contains some screenshots to supplement.

ȣ. Create a rstudio.cloud account: Go to https://rstudio.cloud. Please create a
new account for yourself. You will use this account for math camp, so we advise
you use your HKS email.

ѱ. Sign into the Class Space: Once you have signed in, join the Math Camp “space”
through the access link https://rstudio.cloud/spaces/18236/join?access_
code=pR6TvDKi39LKuDHl%2BfltWf2nGC%2Fb0VAk4TZ1Kz5i. By joining this group,
you can access R material shared with the group.

Ѳ. Copy a Project: In the Projects tab at the tab (expand your browser window is
wide enough), go to the Assignment 01_Summer-Assignment (Figure ȣ(a)), and
click “Start”.

ѳ. Understanding the GUI and R: It will take ѲѶ seconds to about a full minute for a
new window to Ƥnish loading (Figure ȣ(b)). Welcome to RStudio!
RStudio is a GUI (Graphical User Interface) for R, which is the programming lan-
guage. A GUI allows users to interface with the software using graphical aids like
buttons and tabs. Most daily software is a GUI (likeMicrosoftWord or the Control
Panel). RStudio is also an IDE (Integrated Development Environment) meaning
that it provides shortcuts to advanced tools for working with R.
The Console is the core window through which you can observe R operating
(through the GUI). All your results, commands, errors, warnings get shown here.

Ѵ. Open a Script: From the Toolbar’s File, click to New File, then R Script (Figure
ȣ(c)). Thiswill create a blank Ƥlewith the .R Ƥle extension. Please enter your code
for this assignment in this Ƥle, and submit it (see the end of this assignment for
more details). We call this type of Ƥle a “script”. It is a plain (i.e. no formatting
added on) text Ƥlewith executable code. Please save your script, in this casewith
your last name followed by your Ƥrst name, all in lower case, as the Ƥle name (e.g.
kuriwaki_shiro.R).

ѱ

https://style.tidyverse.org
https://rstudio.cloud
https://rstudio.cloud/spaces/18236/join?access_code=pR6TvDKi39LKuDHl%2BfltWf2nGC%2Fb0VAk4TZ1Kz5i
https://rstudio.cloud/spaces/18236/join?access_code=pR6TvDKi39LKuDHl%2BfltWf2nGC%2Fb0VAk4TZ1Kz5i

6. Read in a Dataset: Here, we’ll Ƥrst rely on the convenience features that the
GUI provides. At the bottom right pane, you should see a “Files” tab (Figure
ȣ(d)). Click through to the folders data, then input, and click on the Ƥlename
WEO-2018.xlsx," Choose Import Dataset... (Figure ȣ(e)). This starts the pro-
cess of structuring a piece of R code to read in the Ƥle. One thing you want to
change is the name you assign to your imported dataset. Because you will be
typing in the object name many times, pick a short and informative name (like
weo), as recommended in the style guide (Figure ȣ(f)).
You’ll see a previewof the spreadsheet and the command that produces it (Figure
ȣ(g)). The bottom-right button, “Import”, will send the code directly into the Con-
sole. To make your script replicable, copy the Ƥrst two lines of this inserted code
(the library(readxl) command and the line that involves read_excel()) to
the beginning of your script.
All objects created in R will appear in the “Environment” pane (top-right), along
with information like variable names. After you have imported the dataset, it can
also be available for browsing on a tab right next to your R script.

ƭ. Load packages: As you saw in the in primers (Programming Basics), a R session
needs to load a package every time before using it (the exception is the base
package, which is pre-loaded). Start your script by loading the tidyverse pack-
age, i.e. with typing library(tidyverse) at the top of your R script. To see if
your code works and see its output, highlight your code in the R script and click
on the “Run” Icon (or the hot-key command + Enter). “Running” (or executing) code
sends the command to R and the output should be displayed in the Console.

Ѳ

(a) Open the Assignment Project (b) RStudio GUI/IDE and the Console (highlighted)

 (c) Open a New R Script (d) The Files pane (highlighted) to find the spreadsheet

(e) Navigate to the data file and Import (g) Preview the dataset before completing the Import

 (f) Change the assigned name to an
informative one

Figure Ȣ: Example Screenshots Corresponding to Problem ѱ

ѳ

Problem ѱ: Sorting by Values

The following questions are based on a recent version of the World Economic Outlook
dataset published by the International Monetary Fund (IMF), which you just read in.
Each row in the spreadsheet is a country, with total GDP for a given year adjusted for
purchasing power parity (with the rgdp column preƤx) and total population (with the
pop column preƤx). GDP values are in millions of ѱѶȣȣ international dollars, so you can
directly compare values in different years. Population values are inmillions of persons.

(Ȣ) Write a command (connected by pipes) that (i) Ƥrst sorts the dataset from lowest
to highest real GDP in ѱѶȣƭ, and then (ii) outputs a two-column dataset of the country
and its GDP.

(Ѱ) Write a command that is the same as (ȣ) but now sorts it in descending order of
ѱѶȣƭ GDP (highest to lowest).

(ѱ) The arrange() command can sort on more than one variable. To rank coun-
tries within their continent, write a command that sorts the countries by continent (in
alphabetical order), then by ѱѶȣƭ GDP in descending order. Remember different inputs
(“arguments”) to a function are separated by commas.

(Ѳ) Write a command that shows African countries in descending order of their ѱѶȣƭ
GDP (Use the variable continent to Ƥlter on African countries).

Problem Ѳ: GDP per capita

Create a new tibble object called weo_percap that is the same as the main dataset but
also includes:

• A variable called gdp_percap_2017 that is the country’s GDP per capita in ѱѶȣƭ,
• A variable called gdp_percap_1992, which is the same as above but for ȣѵѵѱ, and
• A variable called growth_2017_1992 which indicates the rate of growth between
the two variables above, following the deƤnition below.

Operationalize the rate of growth between two periods a and b > a as:

growthb,a =
GDP per capitab − GDP per capitaa

GDP per capitaa

You will be using this new object for the subsequent problems.

Ѵ

Problem ѳ: Graphing

(Ȣ) Make a scatterplot that shows a countries ȣѵѵѱ GDP per capita on the x-axis and
its ѱѶȣƭ GDP per capita on the y-axis.Ѳ

(Ѱ) Show the same Ƥgure, but coloring the points by continent. That is, countries of
the same continent should have the same color.

(ѱ) Show the same Ƥgure, but assigning a different shape of point for different con-
tinents. Also, set the color for all countries to navy by using the color name "navy".

Problem 6: Mean and Median

(Ȣ) Let’s start to think about summarizing variables using summary statistics. Write
code that reports the mean of country-level GDP per capita of ѱѶȣƭ in one column
and the median for ѱѶȣƭ in another. Pick column names that are sufƤciently self-
explanatory but also concise.

(Ѱ) Write code that indicates which countries have missing values for ȣѵѵѱ GDP per
capita and ѱѶȣƭ GDP per capita.

(ѱ) Try the same as (ȣ) but now with replacing ѱѶȣƭ with ȣѵѵѱ. You should initially
notice that you get amissing value for both summary statistics. This is because by de-
fault, mean() and median() report amissing value if at least one of its input values is
missing, and as you probably found in part (ѱ), some countries have have missing val-
ues for ȣѵѵѱ GDP per capita. Now, modify your code so that you change this default
and ignore the missing values in your computation. As the help page for the func-
tions indicate, the relevant argument is na.rm (for NA - remove). Change its logical
value from FALSE (its default) to TRUE , while making sure to follow the style guide
for proper spacing (style guide section ѱ.ѱ.Ѳ).

Problem ƭ: slice() and Ƥlter()

Much of data analysis is understanding how new functions work through reading the
documentation and experimentation. The function slice() is part of the tidyverse
and allows you to Ƥlter rows by their position. Notice that slice() and filter()
are similar in that they subset rows of a dataset, but differ in the types of input they
require — the former asks for positions, the latter asks for conditions.

Ѳ You might notice that the scatterplot itself is not as informative as it could be – for example, the axis
labels are obscure. In math camp, we will spend a session discussing the nuts and bolts of making a
high-quality graphic that is informative and user-friendly.

6

Check out the help page of slice() (recall, e.g., by typing ?slice in the Console).
Then, write a command that shows the countries with the top three and bottom three
ѱѶȣƭ GDPs, thereby combining the output in the Ƥrst two R exercises.

[Optional and Challenging] More Graphing

Note: This problem is optional; it involves some commands not covered in the primers.

Make a graph like the one shown in Figure ѱ. Follow both the graphical components
of the graph shown as you see them, as well as the description of the measures as
described in the Figure caption. Hint: Check out the packages ggrepel and scales
to implement some of the features.

Singapore

United Arab Emirates

Taiwan

Hong Kong

South Korea

$0

$25,000

$50,000

$75,000

$0 $25,000 $50,000 $75,000 $100,000

1992 GDP per Capita

20
17

 G
D

P
 p

er
 C

ap
ita

Points sized by 2017 population.
 Labels show top 5 countries with the most absolute change between 1992 and 2017.

 Only countries with population at least 5 million in 1992 or 2017 shown.

Figure Ѱ: Changes in GDP per capita between ȣѵѵѱ and ѱѶȣƭ.

ƭ

Submitting (and Survey)

Before you submit, please complete this brief survey as so that we understand better
you background and can design the R activities in math camp accordingly.

https://harvard.az1.qualtrics.com/jfe/form/SV_cGZPCkppQae9A1L

Once you have completed or made an attempt for all the problem, please clean up
your R script, download it from the cloud, and submit it to Canvas.

Math camp instructors will check and provide comments for your code. You should
follow these guidelines to clean up your Ƥnal submission (and should do so for all
future scripts):

• Delete any failed attempts or duplicative code.
• Label the relevant question number by comment (e.g., ## Problem 1.1 ------- .
Follow the style guide for the exact format).

• You do not need to submit anything other than the R script (i.e., Ƥgures or num-
bers not necessary), but the results should be “reproducible” from the script. This
means that an instructor who receives your script should be able to run it and
reproduce correct answers. To preview this, try restarting R (Toolbar Session
> Restart) and running your entire code at once (e.g., Select All Text and Run,
or Run All by the hot-key option + command + R. Before you do this, though,
make sure you explicitly load the tidyverse package in your code by adding
library(tidyverse) to the beginning of your Ƥle.

• Follow other guidelines from the style guide, such as breaking up long lines and
properly using spaces.

• As we mentioned in the beginning, please name your script with your last name
followed by your Ƥrst name, all in lower case. This helps graders sort through all
submissions.

After editing your code, save it to the main project folder, and then download it by
right-clicking the Ƥle icon (in the Files pane), and selecting Export (Figure Ѳ). Download
the script and attach it to your Canvas submission.

Figure ѱ: Downloading your Ƥnal script

8

https://harvard.az1.qualtrics.com/jfe/form/SV_cGZPCkppQae9A1L

	Submission
	Where are we? Where are we headed?
	Problem 1: Familiarize with the Style Guide
	Problem 2: Loading a Spreadsheet in RStudio
	Problem 3: Sorting by Values
	Problem 4: GDP per capita
	Problem 5: Graphing
	Problem 6: Mean and Median
	Problem 7: slice() and filter()
	[Optional and Challenging] More Graphing
	Submitting (and Survey)

